ASSIGNMENT 4

MATH 235

Part (1): Let *R*, *S* be commutative rings. Define the ring $R \times S$ with the following operations:

 $(r_1, r_2) + (s_1, s_2) = (r_1 + s_1, r_2 + s_2)$ and $(r_1, r_2) \cdot (s_1, s_2) = (r_1 s_1, r_2 s_2)$

with $\mathbb{O} := (\mathbb{O}_R, \mathbb{O}_S)$ and $\mathbb{1} := (\mathbb{1}_R, \mathbb{1}_S)$.

Let $I \triangleleft R$ and $J \triangleleft S$. We have then that $I \subseteq R$ and $J \subseteq S$, so $I \times J \subseteq R \times S$.

- 1. Since $\mathbb{O}_R \in I$ and $\mathbb{O}_S \in J$, $(\mathbb{O}_R, \mathbb{O}_S) \in I \times J$.
- 2. Let $r_1, r_2 \in I$, $s_1, s_2 \in J \implies r_1 + r_2 \in I$ and $s_1 + s_2 \in J$.

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2) \in I \times J$$
, since $r_1 + r_2 \in I$, $s_1 + s_2 \in J$.

3. Let $(r_1, s_1) \in I \times J$, $(r_2, s_2) \in R \times S$. Then $(r_1, s_1)(r_2, s_2) = (r_1r_2, s_1s_2)$. Since $r_1 \in I$ and $r_2 \in R$, $r_1r_2 \in I$. Similarly, $s_1s_2 \in J$. Thus $(r_1r_2, s_1s_2) \in I \times J$

We conclude that $I \times J \triangleleft R \times S$.

Part (2): Let *Q* be some ideal of $R \times S$. We do not know a priori that *Q* is a Cartesian product. Let *I* be the left coordinates of *Q*, i.e. $\{i : (i, \alpha) \in Q \text{ for some } \alpha\}$, and similarly define *J* to be the right coordinates of *Q*. We see immediately that $Q \subseteq I \times J$. To show that these are ideals of *R* and *S*, respectively:

1. Since $Q \triangleleft R \times S$, we know that $(\mathbb{O}_R, \mathbb{O}_S) \in Q$, so $\mathbb{O}_R \in I$ and $\mathbb{O}_S \in J$

2. Let $a, b \in I$. Consider (a, α_a) and (b, α_b) , members of Q, where α_a, α_b are the unknown right coordinates relative to a and b. Then, $(a, \alpha_a) + (b, \alpha_b) = (a + b, \alpha_a + \alpha_b) \in Q$.

 \implies $a + b \in I$, since this is a left coordinate of an element in *Q*. Similarly, one sees that $c, d \in J \implies c + d \in J$

3. Let $a \in I$, and define $(a, \alpha_a) \in Q$ as above. Furthermore, let $(r, s) \in R \times S$. Then $(a, \alpha_a)(r, s) = (ar, \alpha_a r) \in Q$, and thus $ar \in I$. One shows $b \in J \implies br \in J$ the same way.

Now let $(i, \alpha_i), (\alpha_j, j) \in Q$, where $i \in I, j \in J$, and α_i, α_j are the unknown coordinates respective to i, j, as above. $(i, \alpha_i)(\mathbb{1}_R, \mathbb{0}_S) = (i, \mathbb{0}_S) \in Q$ and $(\alpha_i, j)(\mathbb{0}_R, \mathbb{1}_S) = (\mathbb{0}_R, j) \in Q$

 \implies $(i, \mathbb{O}_S) + (\mathbb{O}_R, j) = (i, j) \in Q$. This is the same as saying $I \times J \subseteq Q$. But $Q \subseteq I \times J$, so $Q = I \times J$, and also $I \triangleleft R$ and $J \triangleleft S$ from above.

Part (3): Let *W* be the set of ideals of $\mathbb{Z} \times \mathbb{Z}$. From class, \mathbb{Z} is a principal ideal ring with distinct ideals (0), (1), (2), Thus, any ideal of $\mathbb{Z} \times \mathbb{Z}$ is of the form $(i) \times (j)$, so $W \subseteq \{(i) \times (j)\}$

We've seen in class that this is indeed a ring.

over all $i, j \ge 0$. Further, by part (1), if (*i*) and (*j*) are ideals of \mathbb{Z} , then (*i*) × (*j*) is an ideal of $\mathbb{Z} \times \mathbb{Z}$, so $\{(i) \times (j)\} \subseteq W$. Thus, the ideals of $\mathbb{Z} \times \mathbb{Z}$ are exactly

$$W = \left\{ (i) \times (j) \atop_{i,j \ge 0} \right\}$$

Part (1): Let $f : R \to S$ be a surjective homomorphism and *I* be an ideal of *R*. Define $f(I) := \{f(r) : r \in I\}$.

- 1. $\mathbb{O}_S \in f(I)$, since $f(\mathbb{O}_R) = \mathbb{O}_S$
- 2. Let $a, b \in f(I)$. Then $\exists a', b' \in I$ with f(a') = a and f(b') = b. Note also that $a' + b' \in I$ Then f(a' + b') = f(a') + f(b') = a + b, so $a + b \in f(I)$.
- 3. Let $a \in f(I)$, $b \in S$. Since f is surjective, $\exists b' \in R : f(b') = b$. Also, $\exists a' \in I : f(a') = a$ and $a'b' \in I$ since $I \triangleleft R$. We have then that $f(a'b') = f(a')f(b') = ab \implies ab \in f(I)$

 $\implies f(I) \triangleleft S$

Part (2): Let $f : \mathbb{Q} \to \mathbb{R}$ be the identity function f(x) = x. f is not surjective since, In the text of the question, for example, $\nexists q \in \mathbb{Q} : f(q) = \sqrt{2}$. However, f is a homomorphism: $\mathbb{Q} := R$ and $\mathbb{R} := S$

 $f(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{Q}} = 1 = \mathbb{1}_{\mathbb{R}} \qquad f(x+y) = x+y = f(x)+f(y) \qquad f(xy) = xy = f(x)f(y)$

Now let $I \triangleleft \mathbb{Q}$ and $f(I) = \{f(q) : q \in I\}$. Note that, since $I \subseteq \mathbb{Q}$, its members are rational, and further f(I) = I. Pick $\sqrt{2} \in \mathbb{R}$ and $q \in f(I)$. $\sqrt{2}q$ is irrational, so $\sqrt{2}q \notin I = f(I)$, and we conclude that f(I) is not an ideal of \mathbb{Q} .

Part (1): Let *R* be a ring and $I \triangleleft R$, $J \triangleleft R$. Consider $I \cap J := \{r : r \in I, r \in J\}$.

- 1. Since $\mathbb{O}_R \in I$ and $\mathbb{O}_R \in J$, $\mathbb{O}_R \in I \cap J$.
- 2. Let $a, b \in I \cap J$. Then $a, b \in I$, $a, b \in J$. Thus $a + b \in I$ and $a + b \in J \implies a + b \in I \cap J$.
- 3. Let $a \in I \cap J$, $r \in R$. Then $a \in I$ and $a \in J$, and we have $ar \in I$ and $ar \in J$ $\implies ar \in I \cap J$

Thus, $I \cap J$ is an ideal of R.

Part (2): Let $I + J := \{i + j : i \in I, j \in J\}$. Again we check the axioms:

- 1. Since $\mathbb{O}_R \in I$ and $\mathbb{O}_R \in J$, $\mathbb{O}_R + \mathbb{O}_R = \mathbb{O}_R \in I + J$
- 2. Let $a, b \in I + J$. Then $\exists i_a, i_b \in I$ and $j_a, j_b \in J$ such that $i_a + j_a = a$ and $i_b + j_b = b$. Then $a + b = \underbrace{i_a + i_b}_{\in I} + \underbrace{j_a + j_b}_{\in J} \implies a + b \in I + J$
- 3. Let $a \in I + J$, $r \in R$. Then again $\exists i \in I, j \in J : i + j = a$. We have $ar = (i + j)r = \underset{\in I}{\underset{i \in J}{ir + jr}} \implies ar \in I + J$

Part (3): The ideals of \mathbb{Z} are $i\mathbb{Z}$ for $i \ge 0$. Thus, consider $a \in i\mathbb{Z} \cap j\mathbb{Z}$. Then $a \in i\mathbb{Z}$, so i|a, and similarly j|a. We conclude that a is a common multiple of i and j.

Conversely, consider the set *L* of common multiples of *i* and *j*. If $l \in L$, then $l = n_1 i$ and $l = n_2 j$ for integers n_1, n_2 . Thus, $l \in i\mathbb{Z}$ and $j\mathbb{Z} \implies l \in i\mathbb{Z} \cap j\mathbb{Z}$. We conclude that $i\mathbb{Z} \cap j\mathbb{Z}$ is precisely the set of common multiples of *i* and *j*, i.e. lcm(i, j)k for integer *k*, or

$$lcm(i, j)\mathbb{Z}$$

Now consider the sum of two ideals of \mathbb{Z} , $i\mathbb{Z} + j\mathbb{Z} = \{n_1 + n_2 : n_1 \in i\mathbb{Z}, n_2 \in j\mathbb{Z}\}$. We can re-write this as $\{in_1 + jn_2 : n_1, n_2 \in \mathbb{Z}\}$. We know that gcd(i, j) is in this set, where n_1 and n_2 are fixed according to Bezout's identity. Even more, for any integer k, $k gcd(i, j) = in_1k + jn_2k$ is in this set as well. $\Longrightarrow gcd(i, j)\mathbb{Z} \subseteq i\mathbb{Z} + j\mathbb{Z}$.

Now consider an element $a \in i\mathbb{Z} + j\mathbb{Z}$, and write $a = in_1 + jn_2$. We have that gcd(i, j)|i, so $gcd(i, j)|in_1$. Similarly, $(i, j)|jn_2$. Thus $(i, j)|in_1 + jn_2$. We can then

say a = (i, j)k for some integer k, or $a \in (i, j)\mathbb{Z}$. Thus, $i\mathbb{Z} + j\mathbb{Z}$ is the set

 $gcd(i, j)\mathbb{Z}$

QUESTION 4

Define the relation $R \sim S$ if there exists a bijective homomorphism $f : R \rightarrow S$. This is an equivalence relation:

- $R \sim R$ Let *R* be a ring and define $f : R \rightarrow R$ by f(r) = r. This is a bijection. To show it is a homomorphism:
 - (a) $f(\mathbb{1}_R) = \mathbb{1}_R \checkmark$
 - (b) $f(r_1 + r_2) = r_1 + r_2 = f(r_1) + f(r_2) \ \forall r_1, r_2 \in \mathbb{R} \checkmark$
 - (c) $f(r_1r_2) = r_1r_2 = f(r_1)f(r_2) \checkmark$

 $R \sim S \implies S \sim R$ Let $f : R \to S$ be a bijective homomorphism. Then consider $f^{-1} : S \to R$, which is also a bijection. This is a homomorphism:

- (a) Since $f(\mathbb{1}_R) = \mathbb{1}_S$, $f^{-1}(\mathbb{1}_S) = \mathbb{1}_R \checkmark$
- (b) For any $s_1, s_2 \in S$ where $f(r_1) = s_1$ and $f(r_2) = s_2$ for $r_1, r_2 \in R$, we have $f^{-1}(s_1 + s_2) =$

$$f^{-1}[f(r_1) + f(r_2)] = f^{-1}[f(r_1 + r_2)] = r_1 + r_2 = f^{-1}(s_1) + f^{-1}(s_2) \checkmark$$

(c) Similarly, $f^{-1}(s_1s_2) = f^{-1}[f(r_1)f(r_2)] = f^{-1}[f(r_1r_2)] = r_1r_2 = f^{-1}(s_1)f^{-1}(s_2) \checkmark$

 $\sim R, R \sim S \implies Q \sim S$ Let Q, R, S be rings with $f : Q \rightarrow R$ and $g : R \rightarrow S$ both be bijective homomorphisms. Consider the function $g \circ f : Q \rightarrow S$. Since the composition of two bijective functions is bijective, this is bijective. This is also a homomorphism between Q and S:

(a)
$$g \circ f(\mathbb{1}_O) = g(\mathbb{1}_R) = \mathbb{1}_S \checkmark$$

- (b) $g[f(q_1 + q_2)] = g[f(q_1) + f(q_2)] = g[f(q_1)] + g[f(q_2)] \checkmark$
- (c) $g[f(q_1q_2)] = g[f(q_1)f(q_2)] = g[f(q_1)]g[f(q_2)] \checkmark$

Note that $\mathbb{O}_{\mathbb{Z}} = 0$ and $\mathbb{O}_{\mathbb{Z}/5\mathbb{Z}} = \overline{0}$ **Part (1):** Suppose there was a homomorphism $f : \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}$. Then $f(\overline{5}) = f(\overline{0}) = 0$. However, we can write

$$f(\overline{5}) = f(\overline{1}) + f(\overline{1}) + f(\overline{1}) + f(\overline{1}) + f(\overline{1}) = 1 + 1 + 1 + 1 + 1 = 5$$

We have 5 = 0, which is a contradiction $\frac{1}{4}$

Part (2): Now let $f : \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$ be a homomorphism. Then

$$f(\overline{5}) = f(\overline{1}) + \dots + f(\overline{1}) = 5(1 \mod 7) = 5 \mod 7$$

But also $f(\overline{5}) = f(\overline{0}) = 0 \mod 7$, which establishes the contradiction.

Part (3): Let $f : \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ be an isomorphism, i.e. a bijective homomorphism. Let *s* be an element in $\mathbb{Z}/4\mathbb{Z}$. Then $\exists r \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ with f(r) = s. Consider s + s. This is $f(r) + f(r) = f(2r) = f[(2i, 2j)] = f[(0, 0)] = 0 \mod 4$ for $i, j \in \mathbb{Z}/2\mathbb{Z}$.

For the contradiction, one can take, for instance, s = 1 to find that $2(1) = 2 \mod 4 = 0 \notin 4$

Part (5): Part (4) is on the next page, since it's lengthy.

No, there is not a homomorphism from $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$. Suppose there was one. Then f[(2, 2)] = f[(0, 0)], which must map to 0 mod 4. However, f[(2, 2)] = f[(1, 1) + (1, 1)] = f[(1, 1)] + f[(1, 1)], each of which must map to 1 mod 4, so 2 mod 4.

We conclude that $0 \equiv 2 \mod 4$, which is a contradiction.

Part (4): Let $f : \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ be defined as:

$$f(x) = \begin{cases} (1,1) & \text{if } x \text{ is odd} \\ (0,0) & \text{if } x \text{ is even} \end{cases}$$

noting that the co-domain (1, 1) and (0, 0) are defined in mod 2. We'll show that this is a homomorphism:

$$f(1 \mod 4) = (1 \mod 2, 1 \mod 2)$$

1 maps to 1

$$f(a+b) = \begin{cases} (0,0) & \text{if } a, b \text{ same parity} = \begin{cases} \frac{\text{for } a, b \text{ even}}{(0,0) + (0,0) = f(a) + f(b)} \\ (2,2) = (1,1) + (1,1) = f(a) + f(b) \\ \text{for } a, b \text{ odd} \end{cases} \quad f(a+b) = f(a) + f(b) \end{cases}$$

$$(1,1) & \text{if } a, b \text{ opposite parity} = (0,0) + (1,1) = f(a) + f(b)$$

$$f(ab) = \begin{cases} (0,0) & \text{if } a, b \text{ even} = (0,0)(0,0) = f(a)f(b) \\ (0,0) & \text{if } a, b \text{ opposite parity} = (1,1)(0,0) = f(a)f(b) \\ (1,1) & \text{if } a, b \text{ odd} = (1,1)(1,1) = f(a)f(b) \end{cases}$$

and we are done.